

Product Description

Sirenza Microdevices' SGC-6389Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SGC-6389Z does not require a drop resistor as compared to typical Darlington amplifiers. The SGC-6389Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to 50 ohms.

The matte tin finish on Sirenza's lead-free "Z" package is applied using a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. The package body is manufactured with green molding compounds that contain no antimony trioxide or halogenated fire retardants.

Preliminary Information

SGC-6389Z

50-4000 MHz Silicon Germanium Cascadable Gain Block

Product Features

- Single Fixed 5V Supply
- Supply Drop Resistor not required
- Patented Self Bias Circuitry
- P1dB = 18.6 dBm at 1950 MHz
- IP3 = 34.6 dBm at 1950 MHz
- Robust 1000V ESD, Class 1C HBM

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite

Typical performance with appropriate application circuit							
Symbol Parameters			Frequency	Min.	Тур.	Max.	
G	Small Signal Gain	dB	850 MHz		16.7		
	Citiali Cigital Calif	ab	1950 MHz		13.1		
P _{1dB}	Output Power at 1dB Compression	dBm	850 MHz		19.5		
¹ 1dB	Output I ower at Tub Compression	abili	1950 MHz		18.6		
OIP ₃	Output Third Order Intercept Point	dBm	850 MHz		35.8		
On 3	Output Tillia Order Intercept Form	UDIII	1950 MHz		34.6		
IRL	Input Return Loss	dB	1950 MHz		12.6		
ORL	Output Return Loss	dB	1950 MHz		11.7		
NF	Noise Figure	dB	1930 MHz		4.0		
V_D	Device Operating Voltage	V			5.0		
I _D Device Operating Current		mA			85		
Rth, j-l	Thermal Resistance (junction to lead)	°C/W			60		

Test Conditions:

 $V_{S} = 5.0V$

 $I_D = 85 \text{mA Typ.}$

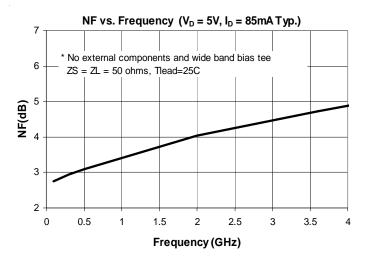
OIP₃ Tone Spacing = 1MHz

 $T_1 = 25^{\circ}C$

 $Z_S = Z_L = 50 \text{ Ohms}$

Pout per tone = 0 dBm

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2005 Sirenza Microdevices, Inc... All worldwide rights respund


303 S. Technology Ct. Phone: (800) SMI-MMIC http://www.sirenza.com
Broomfield, CO 80021 1 EDS-104747 RevA

Typical RF Performance at Key Operating Frequencies (Application Circuit)								
Frequence						cy (MHz)		
Symbol	Parameter	Unit	100 - 1000MHz App. Circuit			1000 - 2200MHz App. Circuit		
			100	500	850	1000	1950	2200
G	G Small Signal Gain OIP ₃ Output Third Order Intercept Point		17.5	17.6	16.7	15.7	13.1	12.5
OIP ₃			35.7	36.2	35.8	35.3	34.6	34.1
P _{1dB}	Output Power at 1dB Compression	dBm	19.7	20.0	19.5	19.4	18.6	18.4
IRL	IRL Input Return Loss ORL Output Return Loss		10.0	18.5	14.6	10.1	12.6	11.9
ORL			12.9	30.0	16.2	11.0	11.7	11.5
S ₁₂	Reverse Isolation	dB	20.6	20.9	21.2	21.7	19.2	19.6
NF	Noise Figure	dB	2.9	3.1	3.2	3.4	4.0	4.2

Test Conditions:

 $V_S = 5V$ $T_L = 25^{\circ}C$ $I_D = 85mA Typ.$ $Z_S = Z_L = 50 \text{ Ohms}$ OIP₃ Tone Spacing = 1MHz, Pout per tone = 0 dBm

	Absolute Maximum Ratings					
	Parameter	Absolute Limit				
	Max Device Current (I _{CE})	130 mA				
	Max Device Voltage (V _{CE})	6.5 V				
Max. RF Input Power* (See Note) Max. Junction Temp. (T _J) Operating Temp. Range (T _L)		+18 dBm				
		+150°C				
		-40°C to +85°C				
	Max. Storage Temp.	+150°C				
*Notes I and assolition 7 FO Observe						

Note: Load condition, $Z_L = 50$ Ohms

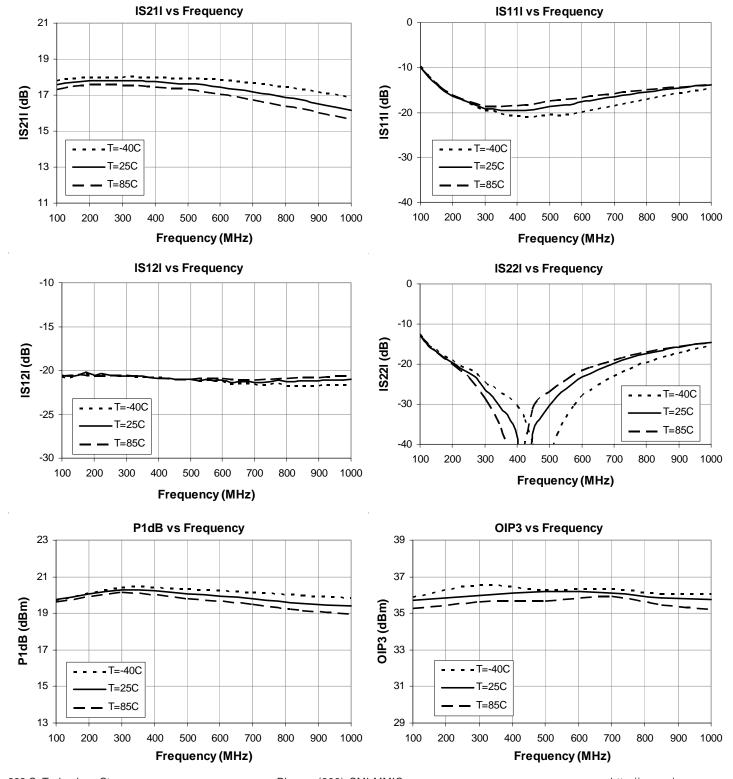
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{TH}$, j-I

100 -	I _D vs. V _D vs. Temperature								
100 -							.//		
80 -									
						j.			
a 60 -									
(Am) bi 40 =									
<u> </u>		T=-40C							
		T=25C							
20 -		T=85C	********	<i>-</i>					
0 -									
	.0	1.0	2.0	3.	.0	4.0	5.0	6.0	
				Vd	(V)				

Reliability & Qualification Information				
Parameter	Rating			
ESD Rating - Human Body Model (HBM)	Class 1C			
Moisture Sensitivity Level	MSL 1			

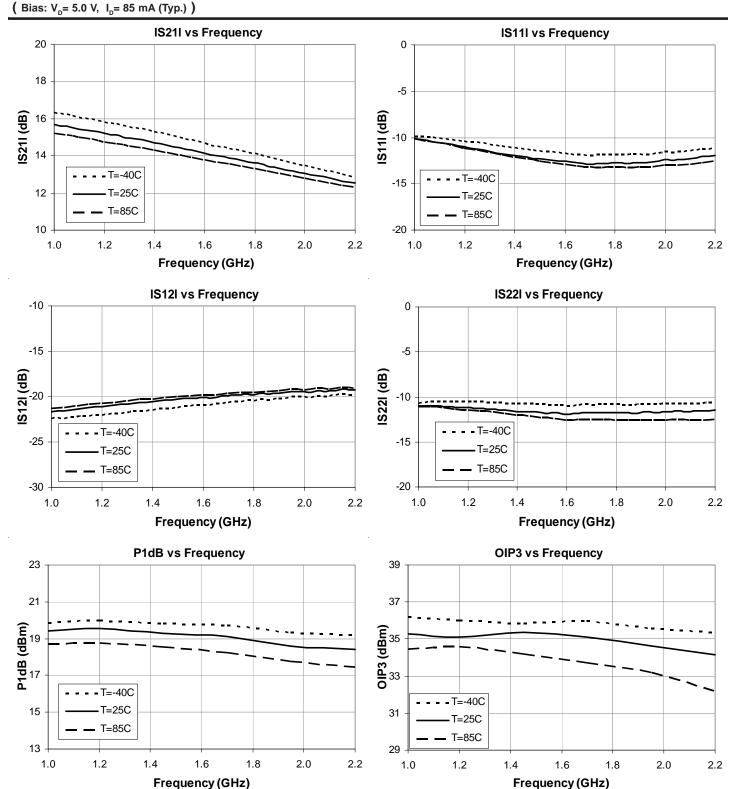
This product qualification report can be downloaded at www.sirenza.com



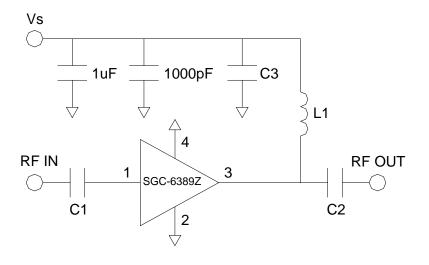
Caution: ESD sensitive

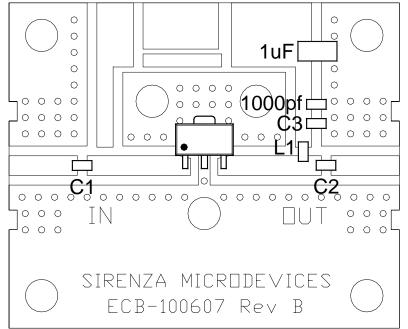
Appropriate precautions in handling, packaging and testing devices must be observed.

Typical RF Performance, 100-1000 MHz Application Circuit (Bias: $V_D = 5.0 \text{ V}$, $I_D = 85 \text{ mA (Typ.)}$)

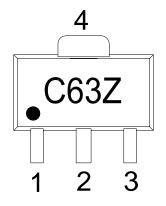

303 S. Technology Ct. Broomfield, CO 80021

Phone: (800) SMI-MMIC


http://www.sirenza.com EDS-104747 Rev A



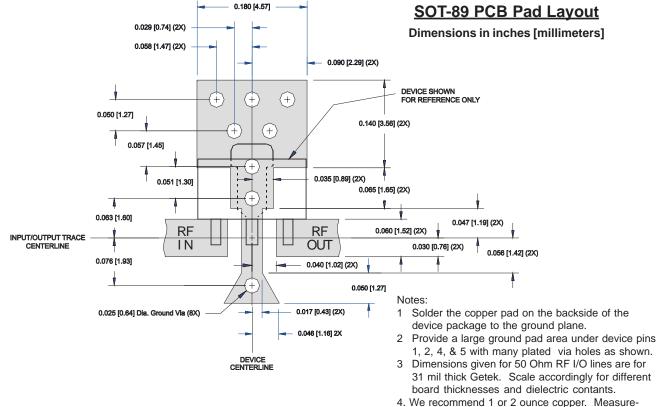
Typical RF Performance, 1000-2200 MHz Application Circuit


	Pin #	Function	Description
1 RF IN			RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation
2,4 GND		GND	Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground inductance and achieve optimum RF performance
	3 RF OUT / DCBIAS		RF output and bias pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.

Application Circuit Element Values					
Reference Designator	100-1000MHz	1000-2200MHz			
C1	1000pF	6.8pF			
C2	100pF	6.8pF			
C3	100pF	6.8pF			
L1	100nH	39nH			

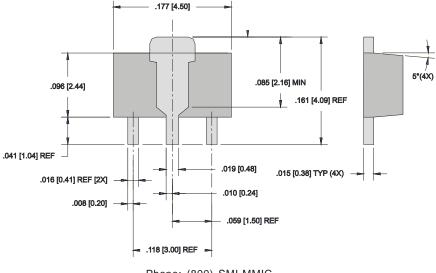
Mounting Instructions

- 1. Solder the copper pad on the backside of the device package to the ground plane.
- 2. Use a large ground pad area with many plated through-holes as shown.
- 3. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.


Part Identification Marking & Pinout

Part Package / Number Lead Composition		Reel Size	Devices / Reel	
SGC-6389Z	Lead Free, RoHS Compliant	13"	3000	

ments for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.



SOT-89 Nominal Package Dimensions

Dimensions in inches [millimeters]

A link to the SOT-89 package outline drawing with full dimensions and tolerances may be found on the product web page at www.sirenza.com.

303 S. Technology Ct. Broomfield, CO 80021

Phone: (800) SMI-MMIC